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For effective response surface modeling during sequential approximate optimization (SAO),
the normalized and the augmented D-optimality criteria are presented. The normalized D

-optirnality criterion uses the normalized Fisher information matrix by its diagonal terms in

order to obtain a balance among the linear-order and higher-order terms. Then, it is augmented

to directly include other experimental designs or the pre-sampled designs. This augmentation

enables the trust region managed sequential approximate optimization to directly use the pre

-sampled designs in the overlapped trust regions in constructing the new response surface
models. In order to show the effectiveness of the normalized and the augmented Droptimaliry

criteria, following two comparisons are performed. First, the information surface of the
normalized D-optimal design is compared with those of the original D-optimal design. Second,

a trust-region managed sequential approximate optimizer having three Dr-optirnal designs is

developed and three design problems are solved. These comparisons show that the normalized

D-optimal design gives more rotatable designs than the original Dr-optimal design, and the
augmented Dr-optimal design can reduce the number of analyses by 30 % - 40 % than the

original O-optimal design.
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1. Introduction

Expensive analyses and experiments being fre­
quently encountered in the modern engineering

optimizations, sequential approximate optimi­

zation (SAO) strategies have gained in populari-
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ty (Barthelemy and Haftka, 1993). Especially,

response surface models (RSM) can be widely

used for replacing some high fidelity com­

putational models (Haftka et. ai, 1998; Unal et.
aI, 1998; Roux et. al, 1998; Sobieski et. al, 2000).

Thus, it is important in constructing response

surface models to achieve an acceptable level of

accuracy while attempting to minimize the com­
putational effort, i.e. the number of system

analyses. Although increasing the number of

design points could improve the accuracy of the

approximate model, many studies have
concentrated on reducing the number of analyses

and experiments (John, 1998).
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2. Review of the D-Optimality
Criterion

Eq. (3) is a statistical measure of the goodness­

of-fit. This represents that the Dr-optimal design

has same meaning of minimizing the asymptotic

2.1 D-optimality design from the view of
experimental design

In order to simplify the explanation of the basis
for D-optimal designs, consider the following

matrix notation as:

(3)

(2)

(I)y=XO+e

The D-optimal design states that the n points

are chosen, in the normalized design space, to

maximize the determinant 1XTX I, which can

mimrmzes the maximum variance of any
predicted value of the function and the variance

of the parameter estimates. This can be interpret­

ed using the variance-covariance matrix defined

as:

where 0 is a vector of n parameters to be
estimated, e is a normally distributed

experimental error with mean zero and constant

variance cr. Then, 0 can be estimated using the

least square method as:

experimental designs, which enables one to easily

use the typical orthogonal array as the

preliminary design of the D-optimal design and

to directly use the pre-sampled design points in

SAO with RSM.
Section 2 reviews the original D-optimal

design from the view of experimental design for

RSM. Section 3 fully describes the proposed a

normalized Dr-optimal design and it's augmented

form. In Sec. 4, the distribution and the

information surface contours of the normalized D­

Optimal design are compared with those of the

original, and show the numerical performance of

SAO combined with the proposed D-optimal
designs such as a normalized Droptimal design or

a augmented D-optimal design. The concluding

remarks are presented in Sec. 5.

To do this, several methods have been used

such as the fractional factorials, the central com­
posite design (CCD) (Box and Wilson, 195I),
and the D-optimal design (Box and Draper, 1971;

Miller and Nguyen, 1993). Although the factorial
approach may be optimal, as judged by the D­

optimal design, in some situation that all the

factors are restricted to a cuboidal region, the

approximated model are often not sensible ones
in practical work (Box and Draper, 1971). Espe­

cially, expensive experiments and analyses enforce

one to accomplish the goal with the smallest
number of experiments or analyses. Thus,

Although the CCD gives more rotatable design

from the viewpoint of a variance optimal design

(Box and Draper, 1987), the D-optimal design is

widely recommended in most of recent studies,

because it can use only the equal analyses or

experiments to the number of unknown­

coetTicients in the approximate model to be fitted.

However, many studies presented that this
saturated D-optimal design made poor converge

of the region of interest, especially when genetic

algorithm (GA) is used in the D'-optimal design.
Thus the 20% to 50% super-saturated D-optimal

designs are widely recommended for approxima­

tion model building (Unal et. ai, 1998; Carpenter,
1993). This is because it leaves a good choice for

response surface model building for the

deterministic experiments such as numerical

analyses. Although these 20% to 50% super­
saturated D'-optimal designs gave good results in
some studies, these super-saturated D-optimal

designs do not seem general but just an empirical
guideline.

In order to overcome the computational burden

of these super-saturated Dr-optimal designs and

the excessive concentration along the perimeter of

the normalized design space, this study first
proposes a normalized Dr-optimality criterion,

which gives equal weightings between linear-or­

der and higher-order terms. This makes the

sampled designs to be rotatable and enables one

to use only the saturated designs. Also, an
augmented D-optimal design, based on the nor­
malized D-optimal design, is suggested in order to

include the pre-selected design points from other
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what different meanings from the view of numeri­

cal analysis. The maximization formulation will

diverge to the infinite but the minimization

formulation will be converged to the small and

positive real value. Thus, the latter seems to be

more observable than the former in the numerical

computation. Hence, this study uses the

minimization formulation.

Now, we explain the meaning of the nor­

malized Fisher information matrix of Eq. (4).
Suppose that the normalized Fisher information

matrix is decomposed by D=L' D. Then the

determinant of D can be defined as

i-l

where (3ij=Dij- ~ i : o; for i= 1,2, "', j and
k=1

j=2, 3, "', N. Also, the values of L ik and Us, are

the components of Land D, respectively. As all

the diagonal components of D have unity respec­

tively, Eq. (5) can not help reducing the

interaction terms in order to maximize the

determinant of D. Hence, for the second-order

response model based on the 3k designs,

maximizing the determinant of the normalized

Fisher information matrix represents that all

points on the corners move into the center and

have equal distances from the center. However,

the original D-optimal design mathematically

gives the 3k designs as the optimum design,

because the linear terms are more dominant than

others in its formulation.

We believe that this normalized Dr-optimal

design satisfying Eq. (5) gives better near­

rotatable than the original D-optimal design,

because it can implicitly reduce inevitable

correlation between coefficients terms III a

quadratic response surface model.

confidence regions for the maximum likelihood

estimates (Haftka et. al. 1998).

2.2 D-optimality criterion from the view of

response surface modeling

The information function is defined as the re­

ciprocal of the variance; that is,

I x = V(y)-I={ n.zT(XTX)-lz}-1

where z= (I XI Xz Xf x~ XIX2) T for a secon

d-order model with two design variables and n is

the number of unknown coefficients. An

experimental design is said to be rotatable if the

variance of the predicted response y at some point

x is a function only of the distance of the point

from the design center and is not a function of

direction (Box and Draper, 1987). Furthermore,

a design with this property will leave the variance

of y unchanged when the design is rotated about

the center; hence, the name rotatable design.

Rotability is a very important property in the

selection of a response surface design. Since the

purpose of RSM is optimization and the location

of the optimum is unknown prior to running the

detailed experiment, it makes sense to use an

experimental design that provides equal precision

of estimation in all direction.

However, the original Droptimaliry criterion is

only one of many single-valued criteria that

might be used in attempts to describe some im­

portant characteristics of the Fisher information

matrix XTX.

3. Augmented Dr-Optimal Design

3.1 Normalized D-optimal design

In order to balance the weightings among

whole the sampled designs, we normalize the

original Fisher information matrix M=XTX as

N

ID 1=II (3)>
j

(6)

Although these two formulations represent

mathematically the same concept, they give some-

where the scaling matrix S is a diagonal matrix

whose values are Su=Wii/M u and Now, the nor­

malized D'-optimal design is obtained by solving

max ID I or min ID I-I
X X

(4)

(5)

3.2 Augmented Dr-oprimal design including

other experimental designs

Now, we augment the normalized D-optimality

criterion to include other experimental designs

such as orthogonal arrays or pre-sampled

experimental designs. For including these pre­

sampled designs, the augmented D-optimality

criterion is suggested as
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Fig. 1 Graphical representation of the second term
in Eq. (8)

min (IDI-I-~PI;I) +~Wi{cos[JrIlx-Xd]} (7)
x ID 1* i=1 2 !1Xi

where represent new selecting points, Xi denotes
the i t h pre-sampled point, !1x i is the radius to

separate new sampling points from the i" pre­

sampled point, and nos is the total number of the

pre-sampled designs. Also, to, denotes the

weighting coefficient for the i t h pre-sampled

design. The value of ID 1;1 is the final value of
min ID 1-1 in Eq. (5). Figure I graphically shows
oX

the second term of Eq. (7).

When the trust-region managed sequential ap­

proximate optimization (SAO) is performed

using the response surface models (Dennis &
Torczon, 1996; Alexandrov, 1996; Rodriguez et.

al., 1998), the trust-regions can be partially

overlapped during consecutive iterations, shown

in Fig. 2. Although one wants to use the pre­

sampled designs in this overlapped region for

constructing the new response surface models, the
original or normalized D-optimality criteria do

not use them because their design points are pre­

determined. The proposed augmented D­

optimality criterion of Eq. (7), however, can use

these pre-sampled design points in the overlapped
region and additionally sample only the (np­
nps) numbers of new designs.

k - lilt trust region

--

OVerlapPed
trust region

kilo trust

region

Fig. 2 The overlapped trust region between consec­
utive iterations in SAO with trust region
model management strategy

4. Numerical Studies

4.1 Comparison of the normalized and the
original D-optimal designs

In order to show the effectiveness of the
proposed optimality criteria, we graphically com­

pare the sampled design points for a quadratic

response surface model with those of the original

Dr-optimality. Figure 3 shows the saturated

design points of the normalized D-optimality cri­

terion and the original D-optimality criterion in

developing the quadratic model having two

design variables. The normalized D-optimality

criterion gives an axis-symmetric distribution,
which is similar to the pentagon of the well­

known equiradial designs for two variables. Now

we compare the information surface for those two

criteria. Figure 4 shows the information functions

for those saturated designs shown in Fig. 3. The

normalized D-optimal design seems to be better

near-rotatable than the original. Figure 5 shows

the 50 % super-saturatedD-optimal design based

on the original D-optimality criterion and their

information surface. As Box and Draper (1971,

1987) had described, the optimum of this 50 %

super-saturated Droptimal design with two

variables is obtained as 32 factorial design. This
shows that our in-house GA program (Kim and

Park, 2001) is quite reliable to solve D­

optimality criteria. However, It has been well
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Fig. 4 Comparison of the information surface for

the saturated designs sampled by the nor­

malized D-optimality criterion an the origi­

nal D-optimality criterion
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(b) The original Droptimal design

Fig. 3 Comparison of the saturated designs sampled
by the normalized Droptimality criterion and

the original D-optimality criterion

known that 32 factorial design was not rotatable

and y' designs and their fractions were not good

choices for second-order response surface

designs.

4.2 Numerical comparisons of the proposed

and the original D-optimality criteria

during SAO

In order to show the numerical performance,

the proposed and the original Dr-optimality

criteria are embedded in the SAO (Hong, Kim

and Choi, 2001), which is composed of three

modules such as SAO manager, approximate

-1.0 --<J.B -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

X1

(a) Design points

(b) Information surface

Fig. 5 Design points and the Information surface of

the 50 % super-saturated D-optimal design
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SAO MANAGER

r- ~ Construct approximate optimization problem
. Select optimization method
- Checkthe Convergence Criteria

Fig. 6 Skeleton Structure of Sequential Approxi­
mate Optimizer based on RSM

I Approximate Model Manager I
1The T"", Regioo o, (x)

I Approximate ModelDeveloper

x. en,(x! iJ(x.),g,(x.)

I
Perform Analysis/Experiments I
withinthegivenTrustRegion

_T cbJ(x),g,(x)

Optimizers

Table 1 Optimization results of the gear reducer
system design

Initial Augmented Normalized Original
Design D-optimality Dr optimality D-optimality

Xl 3.1 3.504 3.499 3.499
X, 0.75 0.700 0.700 0.700

X3 22.5 17.000 17.000 17.000

x. 7.8 7.300 7.300 8.050
X, 7.8 7.719 7.723 7.718

X. 3.4 3.353 3.358 3.352

X7 5.25 5.289 5.294 5.289

r 4144.83 2998.29 3000.43 3002.57

Iteration 3 3
NF 74 112 112

Shaft 1

Fig. 7 Gear reducer system

tance between bearing II (xs), diameter of shaft I
(X6) and diameter of shaft II (X7) .

The optimization results are listed in Table 1.

In Table 1, f* represents the final objective value,

Iteration denotes the numbers of approximations,

and NF denotes the cumulative number of func­

tion evaluations during SAO. All three methods

give the similar results. However, the augmented
Dr-optimal design can reduce the number of func­

tion evaluations by 30 % than other designs. This
represents that the trust-regions are frequently

overlapped as optimization progresses.

[Example 2] Five degree-of -freedom Vehicle
Suspension System Design Problem

Figure 8 (a) shows a five degree of freedom

vehicle suspension system (Haug and Arora,

1979; Kim and Choi, 1998), which is to be

designed to minimize the extreme acceleration of

the driver's seat for a given vehicle speed and a

road surface profile shown in Fig. 8 (b). This

profile is a combination of two sinusoidal curves

with different half-wavelengths, which represents

a severe bump condition. Spring constants kh kz

model manager, and optimization process shown

in Fig. 6. SAO manager constructs the approxi­

mate optimization problem and checks the con­

vergence. Approximate model manager controls

the accuracy of the response surface models with

trust region concept. We use L 1 exact penalty

function (Fletcher, 1987) of (8) to manage the

trust region for nonlinear constrained
optimization.

m
Ll(X) =f(x) +r~ max(g;(x) , 0) (8)

j==l

where f (x) , g; (x) and r are the objective func­
tion, the ph inequality constraint function, and

the penalty parameter. This functional is exact in

the sense that local minimums of the functional

are equivalent to local minimums of the original
problem to a large extent. The augmented D­

optimality criteria are embedded in the module of

Approximate Model Developer (AMD).

[Example 1] Gear Reducer Design Problem
This design problem has been widely used in

the literature (Azam and Li, 1989). The design

objective of this gear reducer system (shown in
Fig. 7) is to minimize the overall volume (or

weight) while satisfying the bending stress of the

gear tooth, the contact stress of the gear tooth, the

transverse deflection of the shafts, the stresses of

the shaft and dimensional restriction of design

variables. The design variables are gear face

width (Xl), teeth module (x z) , number of teeth of

pinion (Xa) , distance between bearings I (X4), dis-

bean '\bearin
ng II

~ Shaft II

\11' I x.
_x,

-G -x,

~[;x,
;1
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Table 2 Optimization results of the five-degree­
of-freedom vehicle suspension system

Initial Augmented Normalized Original
Design Dr-optimality" Dr-optimality" Droptimality"

b, 100.00 50.00 50.00 50.00
I>, 300.00 200.00 200.00 200.00
I>, 300.00 200.00 200.00 793.70

b, 10.00 36.56 21.88 47.23

bs 25.00 77.38 77.04 77.34

bs 25.00 45.08 41.16 80.00

f' 331.79 256.28 256.74 255.03

Iteration 7 7 7
NF 173 302 302

, 50 % super-saturated sampling is employed.

(a) Vehicle suspension system
,(,v)

i
~"I,"IJ60')--1+-)66Cm(I'4')1

I 12.7cm(I")

i~
(b) Road surface profile

Fig.8 Five-degree-of-freedom Vehicle Model

and ka and damping coefficients cr, Cz and Ca of

the system are chosen as design variables. The

motion of the vehicle is constrained so that the

relative displacements between the chassis and the

driver's seat, the chassis and the front and rear

axles, and the road surface and the front and rear

axles are within given limits. The design variables

are also constrained.

The optimization results are listed in Table 2.

All three methods give the similar results.

However, the augmented D-optimal design can

reduce the number of function evaluations by

40 % than other designs. In this problem, only the

normalized D-optimal design is successfully

converged when the saturated sampling is

employed. Hence, the optimization results of Ta­

ble 2 are obtained using the 50 % super-saturated

sampling points.

5, Concluding Remarks

This study proposed an augmented D-optimal

design for effective response surface modeling

during sequential approximate optimization

(SAO). The proposed method fundamentally

uses the normalized Fisher information matrix by

its diagonal terms in order to obtain a balance

among the linear-order and higher-order terms.

Then, it is augmented to directly include other

experimental designs or the pre-sampled designs.

The proposed method was embedded into the

sequential approximate optimization framework.

Then it solved the two typical examples such as a

gear reducer design and a five-degree-of-freedom

vehicle suspension system design. The

optimization results are compared with those of

the original D-optimal design. These

comparisons showed that the proposed

augmented D-optimal design could reduce the

number of analyses by 30 % - 40 % than the

original De-optimal design, while obtaining the

similar optimum values.
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